

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Prognostic utility of Minimal Residual Disease (MRD) after curative intent induction therapy for DLBCL: A prospective real-world ctDNA study

Brian J Sworder, Sang Eun Yoon, Seok Jin Kim, Andre Schultz, Greg Hogan, Sandra Close, Jacob J Chabon, Maximilian Diehn, David M Kurtz, Ash A Alizadeh, Won Seog Kim

UNG KYUN KWAN UNIVERSITY (SKKU) chool of Medicine

Standard of Care Response Assessment

- PET/CT is the current standard of care to assess response during and after treatment to inform clinical decision making.
- However, the GOYA trial showed that 49% of patients who were PET positive did not have a progression event within 3 years.
- This suggests that improved prognostication at EOT could limit overtreatment and reduce the need for additional testing.

Kostakoglu L, Martelli M, Sehn LH, et al. End-of-treatment PET/CT predicts PFS and OS in DLBCL after first-line treatment: results from GOYA. *Blood Advances*. 2021;5(5):1283-1290.

MRD Detection in DLBCL

 Circulating tumor DNA (ctDNA) Minimal Residual Disease (MRD) detection has the potential to improve prognostication in diffuse large B-cell lymphoma.

Lead-time between detection of disease by ctDNA and detection by CT or flow cytometry in 15 DLBCL patients who relapsed after treatment.

Dashed line shows median lead time of 3.5 months.

Roschewski et al. Lancet Oncol. 2015;16(5):541-9.

Overall survival in patients with LBCL stratified by interim PET-CT results and molecular response.

Kurtz et al. J Clin Oncol. 2018;36(28):2845-2853.

 First generation MRD detection tests have shown limited sensitivity.

Roschewski et al. *Lancet Oncol*. 2015;16(5):541-9. Kumar et al. *Blood*. 2020; 136 (Supplement 1): 46–47. Kurtz et al. *Nat Biotechnol*. 2021;39:1537-1547.

UCI Health

SUNG KYUN KWAN UNIVERSITY (SKKU) School of Medicine

PhasED-Seq improves detection of MRD

Phased Variant Enrichment and Detection Sequencing

Single Nucleotide Variant (SNV)

- Detection of phased variants greatly reduces background error rate in comparison to SNV detection
- Allows for reliable MRD detection when ctDNA is present at very low levels

UCI Heal

Study Design

- We prospectively enrolled a real-world cohort from Samsung Medical Center who were diagnosed with Diffuse Large B-Cell Lymphoma through histopathological diagnostic procedures, with or without previous treatment.
- MRD levels were compared to standardized responses by:
 - PET/CT Imaging (Lugano 2014)
 - Progression-Free Survival
 - Overall Survival

Enrolled Patients with Stage I-IV DLBCL

- Newly diagnosed with DLBCL
- Undergoing first-line therapy with R-CHOP or EPOCH-R

Blood Collection for ctDNA Profiling

- Blood collection (Streck) at 3 pre-defined milestones
 - Baseline (pre-treatment)
 - Interim (typically following cycle 3)
 - End of treatment (EOT)

ctDNA-MRD Testing

• PhasED-Seq testing (Foresight Diagnostics, Inc.)

UCI Hea

ctDNA-MRD Testing

- Patients were included in the analysis if:
 - Baseline plasma (median 4mL) was available, and
 - Was collected prior to treatment or had sufficient tumor burden for testing
- 364 samples from 99 patients were tested in a blinded manner by PhasED-Seq (Foresight Diagnostics, Inc.)
- Evaluable patients had a viable sample and PET/CT results at the relevant timepoint
 - \circ 83 evaluable patients for interim timepoint
 - o 77 evaluable patients for EOT timepoint

Tumor-Specific PVs Identified

- Targeted sequencing of pre-treatment plasma (ctDNA) and paired PBMCs (genomic DNA) using a fixed panel that includes regions of biological relevance for LBCL
- Tumor-specific PV list generated by selecting PVs that are present in ctDNA and are absent or present at low levels in gDNA

MRD Assessed at Interim and EOT Timepoints

- ctDNA-MRD assessed at interim and EOT timepoints using tumor-specific PV list
- MRD positive if ctDNA levels exceeded an analytical detection threshold (~1:10⁶ cfDNA molecules) corresponding to 98% specificity

Cohort Description (N=99)

Demographics				Disease	Disease Characteristics			Therapy & Response					
Characteristic N (%)		Charac	Characteristic		Character	ristic	N (%)						
	Age	Age Median 58		IPI	0-1	27 (27%)	Therapy	R-CHOP	93 (94%)				
		IQR	48, 66		2 20 (20%) D		DA-EPOCH-R or	6 (6%)					
	Sex	Female	38 (38%)		3	31 (31%)		R-EPOCH					
		Male	61 (62%)		4-5	21 (12%)	Interim	CMR	70 (70%)				
	Stage	I	8 (8%)	Cell of	ABC	54 (55%)	Response	Non-CMR	25 (25%)				
	U	П	25 (25%)	Origin*	GCB	30 (30%)		NA	4 (4%)				
			20 (2070)				End of	CMR	71 (71%)				
		III	12 (12%)		Undetermined	15 (15%)	Therapy PET		10 (100()				
		IV	54 (55%)	Double	Non-double hit	66 (67%)		NON-CIVIR	13 (13%)				
		-Hit		Double-hit	5 (5%)	Response	NA	15 (15%)					
			Status	NA	28 (28%)								

*Cell of origin was determined by NanoString or Hans

ctDNA outperforms PET for response assessment

Stratification of par • PET/CT scan or ct therapy

			Over		0.25 - 0.00 -								HF	R 10	6.2	(2.9 p =
	Numbe		er at risk	0	6	12	18	24	зо М	36 ont	42 :hs	48	54	60		
				nor	PET CR	10 67	10 66	9 64	5 60	5 58	5 57	5 53	4 30	2 20	1 17	0 5
			_		1.00 -		÷,		~~					.		
			Irviva		0.75 -			٦								
-СТ	ctDNA	-MRD	all Su		0.50 -			1	L							
Negative	Positive	Negative	Vera		0.25 -							н	R 8	4.7	(1	9.5,
CR	ctDNA detected	ctDNA not detected	0)	0.00 -											p •
74%	25%	82%				0	6	12	18	24	30 M	36 ont	42 hs	48	54	60
86%	38%	93%	N ctl	Numbe	er at risk Detected	16	16	13	6	6	6	6	3	3	2	1
			ctDNA	NOT L	rected	01	60	60	59	5/	56	52	31	19	16	4

UCI Health

ctDNA outperforms PET for response assessment

- Standard response assessment in DLBCL depends on PET/CT scan at EOT

 Interpreted using Lugano 2014 criteria
- ctDNA-MRD assessment better stratified patient outcomes (PFS and OS) than standard response assessment

	PET	-ст	ctDNA-MRD				
	Positive Negative		Positive ctDNA detected	Negative ctDNA not detected			
PFS at 24 mos	40%	74%	25%	82%			
OS at 24 mos	50%	86%	38%	93%			

ctDNA-MRD outperforms PET/CT scan at interim and EOT time-points

	Overall	Survival	HR	95% CI	P-value
Univariable	Interim PET: non-CR Interim ctDNA-MRD detected EOT PET: non-CR EOT ctDNA-MRD detected		2.30 4.69 4.83 13.05	0.98, 5.4 1.83, 12.02 1.64, 14.21 4.04, 38.7	0.055 0.001 0.004 <0.001
able	<i>Interim Model</i> Interim PET: non-CR Interim ctDNA-MRD detected		1.99 4.42	0.84, 4.69 1.72, 11.38	0.117 0.002
Multivaria	<i>EOT Model</i> EOT PET: non-CR EOT ctDNA-MRD detected		2.24 10.93	0.72, 7.01 3.52, 39.99	0.166 <0.001
	-	0.5 1.0 10.0 Hazard Ratio (95% CI)	50.0		

S American Society of Hematology

ctDNA-MRD predicts outcomes when PET/CT is positive at EOT

- Stratification of outcomes by ctDNA-MRD in the subset of patients who were PET/CT positive at the end of therapy
- ctDNA-MRD provides additional risk stratification that could inform treatment decisions

	MRD Positive ctDNA detected	MRD Negative ctDNA not detected			
PFS at 24 mos	0%	100%			
OS at 24 mos	17%	100%			

American Society of Hematology

UNG KYUN KWAN UNIVERSITY chool of Medicine

ctDNA-MRD predicts outcomes when PET/CT is negative at EOT

- Stratification of outcomes by ctDNA-MRD in the subset of **patients who were PET/CT negative** at the end of therapy
- ctDNA-MRD identified patients who were PET/CT negative at EOT who experienced disease progression or death

	MRD Positive ctDNA detected	MRD Negative ctDNA not detected				
PFS at 24 mos	40%	80%				
OS at 24 mos	50%	93%				

American Society of Hematology

JNG KYUN KWAN UNIVERSITY hool of Medicine

ctDNA-MRD predicts outcomes when discordant with PET/CT at EOT

American Society of Hematology

ctDNA-MRD predicts outcomes when discordant with PET/CT at EOT

- Comparison of PFS in cases where PET/CT and ctDNA-MRD response assessments at the end of therapy are discordant
 - Pooled analysis of current dataset and previously reported dataset (N=92, Roschewski M et al, ASH 2022*)
 - PET/CT scans read according to standard of care
- Cases with ctDNA-MRD+ / PET- have significantly inferior PFS to those with ctDNA-MRD- / PET+

*Roschewski et al cohort included LBCL cases with EOT plasma and PET/CT available. Genotyping performed using plasma or tumor tissue.

Limitations

- Genotyping was completed using pre-treatment plasma samples with relatively low volumes (median 4 mL pre-treatment plasma).
 - Genotyping using tumor tissue may have identified more phased variants (PVs) to improve MRD detection at interim and EOT timepoints.

Conclusions

These data demonstrate the feasibility and the prognostic utility of ctDNA-MRD during and after SOC induction therapy for DLBCL in a real-world population using an ultrasensitive ctDNA-MRD assay.

The higher predictive value and accuracy of detectable ctDNA-MRD as compared with PET/CT suggest opportunities for integration of such assays in lymphoma response criteria, to potentially inform future clinical decision making.

Use of ctDNA-MRD for confirmatory testing in PET-CT positive patients at EOT could eliminate the need for confirmatory biopsy to inform treatment decisions following the completion of first-line therapy.

EOT PET Positive (non-Complete Response)

SUNG KYUN KWAN UNIVERSI School of Medicine

Acknowledgements

SKKU Samsung Medical Center Team

- Sang Eun Yoon
- Seok Jin Kim
- Won Seog Kim

Stanford University Team

- David Kurtz
- James Hamilton
- Mari Olsen
- Max Diehn
- Ash Alizadeh

Foresight Diagnostics Team

- Andre Schultz
- Greg Hogan
- Krystal Brown
- Sandra Close
- Jacob Chabon

